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Abstract: We study the properties of nonlinear interference noise (NLIN)
in fiber-optic communications systems with large accumulated dispersion.
Our focus is on settling the discrepancy between the results of the Gaussian
noise (GN) model (according to which NLIN is additive Gaussian) and
a recently published time-domain analysis, which attributes drastically
different properties to the NLIN. Upon reviewing the two approaches we
identify several unjustified assumptions that are key in the derivation of the
GN model, and that are responsible for the discrepancy. We derive the true
NLIN power and verify that the NLIN is not additive Gaussian, but rather

it depends strongly on the data transmitted in the channel of interest. In
addition we validate the time-domain model numerically and demonstrate
the strong dependence of the NLIN on the interfering channels’ modulation
format.
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1. Introduction

The modeling of nonlinear propagation in optical fibers is a key component in the efficient de-
sign of fiber-optic communications. Although computer simulations have long reached a state
of maturity allowing very accurate prediction of system performance, their use is prohibitively
complex in many cases of relevance, where approximate analytical models become invalu-
able. In a wavelength division multiplexed (WDM) environment, nonlinear propagation phe-
nomena can be classified as either intra-channel [1], or inter-channel [2] effects. Intra-channel
effects manifest themselves as nonlinear inter-symbol interference, which can in principle be
eliminated by means of post-processing (such as back-propagation [3]), or pre-distortion [4].
Inter-channel effects consist of cross-phase-modulation (XPM) and four-wave-mixing (FWM)
between WDM channels, and in a complex network environment, where joint processing is
prohibitively complex, distortions due to inter-channel effects are random and it is customary
to treat them as noise. The chief goal of analytical models of fiber propagation is to accurately
characterize this noise in terms of its statistical properties.

While early attempts of characterizing the properties of nonlinear interference noise (NLIN)
in the context of fiber-communications date back to the previous millennium [5], two recent
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analytical approaches are of particular relevance to this paper. The first approach, which relies
on analysis in the spectral domain, originated from the group of P. Poggiolini at the Politecnico
di Torino [6-11] and its derivation has been recently generalized by Johannisson and Karls-
son [12] and by Bononi and Serena [13]. The model generated by this approach is commonly
referred to as the Gaussian noise (GN) model and its implications have already started to be
addressed in a number of studies [14—16]. The second approach has been reported by Mecozzi
and Essiambre [17], and it is based on a time-domain analysis. The results of the latter ap-
proach [17] are distinctly different from those of the former [6—13]. Most conspicuously, in
the results of [6-13], the NLIN is treated as additive Gaussian noise and its power-spectrum
is totally independent of modulation format. Conversely, the theory of Mecozzi et al. predicts

a strong dependence of the NLIN variance on the modulation format, consistently with recent
experimental observations [18]. It also predicts that in the presence of non-negligible intensity
modulation a large fraction of NLIN can be characterized as phase noise. This property has a
very important practical consequence. If NLIN indeed has a large phase-noise component, as
argued in [17], then it can be canceled out easily by making use of its long temporal correla-
tion [19], and the effective NLIN becomes much weaker than suggested by its overall variance.
The consequences of this reality in terms of the predicted channel capacity have been recently
studied in [19, 20].

In this paper we review the essential parts of the time-domain theory of [17], as well as those
of the frequency domain GN approach. We argue that the difference between the two models
results from three subtle, but very important shortcomings of the frequency domain analysis.
The first is the implicit assumption that NLIN can be treated as additive noise, while ignoring
its statistical dependence on the data in the channel of interest. While it is true that within the
framework of a perturbation analysis NLIN can always be expressed as an additive noise term,
its dependence on the channel of interest is critical. In the case of phase noise, for example, the
signal of interess(t) changes inte(t) exp(iAB), and the noisg(t) exp(iAB) — s(t) ~ is(t)AB
may be uncorrelated with(t), but it is certainly not statistically independent of it. The second
shortcoming of the frequency domain approach is the assumption that in the limit of large
chromatic dispersion the electric field of the signal and the NLIN that accompanies it can be
treated as a Gaussian processes whose distribution is uniquely characterized in terms of its
power density spectrum. The third shortcoming that we find in the GN analysis, is the claim
that non overlapping frequency components of the propagating electric field are statistically
independent of each other. We show here that these components are statistically dependent in
general and it is the assumption of independence that is responsible for the fact that the NLIN
in [6-13] appears to be independent of modulation format. We supplement the NLIN variance
obtained in the frequency domain analysis of [6] with an extra term that follows from fourth-
order frequency correlations and which, as we believe, settles the discrepancy with respect to
the time-domain theory of [17].

The study contained in this paper was performed only for the case of single carrier transmis-
sion, where XPM constitutes the predominant contribution to NLIN, a fact which is confirmed
by our simulations. For this reason the analytical parts of this paper focus exclusively on XPM.
Moreover, in order to isolate only the NLIN caused by inter-channel nonlinear interference,
we back propagate the channel of interest so as to eliminate the distortions that are induced by
SPM and chromatic dispersion.

The paper is organized as follows. In Section 2 we review the main analytical steps of [17],
occasionally recasting them in a form that emphasizes the aspects of most relevance to this
paper, and supplement them by the calculation of the autocorrelation function of the non-
linear phase-noise [19]. We then review the spectral approach in Section 3 and explain the
consequences of the assumptions on Gaussianity and statistical independence that were made
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in[6,7,12,13]. In Sec. 4 we describe a numerical study that validates the analytical prediction
of Secs. 2 and 3. Section 5 is devoted to a summary and discussion.

2. Time-domain analysis

We consider a channel of interest, whose central frequency is arbitrarily set to zero, and a single
interfering channel whose central frequency is s€1&ince XPM only involves two-channel
interactions, the NLIN contributions of multiple WDM channels add up independently, and
there is no need to conduct the initial analysis with more than a single pair. We also ignore
nonlinear interactions that involve amplified spontaneous emission noise, which are negligi-
ble within the framework of a perturbation analysis such as we are conducting here. While a
second-order analysis such as in [21] is possible in principle, we find the first-order approach
sufficiently accurate in the context of the study conducted here. As a starting point we express
the zeroth order (i.e. linear) solution for the electric field as

. . plo2
u0(z0) = F a2t —KT)+ ;bke*'m*'”%“gwkz,t ~KT-p'0z, (1)

where the superscrip? throughout the equation signifies “zeroth order”. The first sum on
the right-hand-side of (1) represents the channel of interest, and the second sum represents
the interfering channel. The symbaig and by represent the data that is carried by ath

symbol of the two channels, respectivedygndt are the space and time coordinat@s,is the
dispersion coefficient antl is the symbol duration. For simplicity of notation, and without loss

of generality we will assume throughout this section tBéatis negative and positive. The
fundamental pulse representing an individual symbgi%(z,t) =U(2)g(0,t), whereg(0,t) is

the input waveform ant(z) = exp(i%ﬁ”zﬁtz) (with & denoting the time derivative operator)

[22] is the propagation operator in the presence of chromatic dispersion. We assume that the
waveformg(0,t) is normalized to unit energy, whereas the actual energy of the transmitted
symbols is accounted for by the coefficieatsandby. In addition it is assumed that the input
waveformg(0,t) is orthogonal with respect to time shifts by an integer number of symbol
durations, namely™*, g*(0,t —KT)g(0,t —K'T)dt = & . Owing to the unitarity olJ(z) this
property of orthogonality is also preserved in the linearly propagated wavefSt(m t).

The first order correction for the fieldjY(zt), is obtained by solving the nonlinear
Schrddinger equation in which the nonlinear term is evaluated from the zeroth order approxi-
mation

du(zt)
0z

wherey is the nonlinearity coefficient and the functid(z) accounts for the loss/gain profile
along the optical link [17]. Itis equal to 1 in the case of perfectly uniform distributed amplifica-
tion, whereas in the case of lumped amplifietg) = exp(—aZ), whereq is the loss coefficient
andZ is the difference between the poinand the position of the last amplifier that precedes
it. It is assumed that only terms that contribute to the channel of interest (i.e. in the vicinity
of zero frequency) are retained in the nonlinear term in (2). The solution to Eq. £2} htis
straightforward and it is given by

=~ 5BV Z1) + iy DO (2 ) O z1), @

ud(L.t) = iy/OL d2U(L - 2)F(2)|u@ (1) 2u@ (2 t). @3)

We now focus, without loss of generality on the detection of the zeroth data sy lvdtich is
obtained by passing the received fialdl,t) ~ u©(L,t) +u®(L,t), through a matched filter
whose impulse response is proportionaj®(L, T). The contribution ofi®) (L, t) to the output
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of the matched filter igg itself, whereas the contribution of? (L,t) is the estimation errakag
resulting from NLIN. It is given by

Nag — / 0" (L, t)ck :iy/OLdzf(z) /:dtg<°>*(z,t)|u<°>(z,t)|2u<°>(z,t), (@)

where we have used the identltfL — 2)g©" (L,t) = g(@" (z t), which follows from the defi-
nition of the linear propagation operator. Substitution of the zeroth order field expression from
Eq. (1) in Eq. (4) produces the result

Dag = iy Z (ahaiansn,k,m+ 2ahb’£bmxh,k,m)- ©)
h.k;m
where

Shkm / dzf (z /dtg (zt)g9(zt —hT)g? (2t —KT)gO (2t —mT),  (6)

is responsible for intra-channel interference effects, whereas

Xhkm /dzf /dtg (zt)g9(zt —hT)
x99 (2t — KT — B"Q2)g"0 (z,t — mT — B"Q2), (7)

accounts for (inter-channel) XPM induced interference. Intra-channel interference involves
only symbols transmitted in the channel of interest and they need not be considered as noise. It
can be reduced either by performing joint decoding of a large block of symbols, or eliminated
by means of back-propagation or pre-distortion. We will hence ignore the terms proportional to
Shkm in what follows and focus on the NLIN due to XPM. Notice that given the injected pulse
waveformg(0,t), the symbol duratioit, the channel spacin@ and the parameters of the fiber,

the value ofX, m can be found numerically. It can be seen to reduce monotonically with the
walk-off between channels, where the relevant parameter is the ratio between the group velocity
differenceB”Q and the symbol duratioh.

A very important feature i, m is that it is proportional to the overlap between four tem-
porally shifted waveforms. It is therefore reasonable to expect based on Eq. (7) that the largest
elements ofX,  m are those for whiclh = 0 andk = m. That is because in this situation only
two temporally shifted waveforms need to overlap. We write the contribution of these terms to
Aag as

Aag, =iag <2VZ |bm|2XO,m,m> =iaoh, (8)

where we defind = 2yzm|bm|2X0,m’m. Notice that sinceXomm is a real quantity according

to Eq. (7),0 is a real quantity as well and it represents a nonlinear phase rotation. This was
the inspiration for using the sub-indgxas in “phase”) in the symbdao, [23]. The first and
second moments & are given by

(6) = 2y(|bo[?) > Xomm, and (62) = 4y > {[Iom|?[broy %) X0 mmXo .
m m,m’
and the variance of the phase rotation is

06% = (6%) — (6)” = 4y* ({|bol*) — (|bo|*)? zxmm (9)

#194809 - $15.00 USD Received 29 Jul 2013; revised 7 Sep 2013; accepted 16 Sep 2013; published 21 Oct 2013
(C) 2013 OSA 4 November 2013 | Vol. 21, No. 22 | DOI:10.1364/OE.21.025685 | OPTICS EXPRESS 25689



where we have used the independence between different data sykig§b.|?) =
(Ibml?) {[bry [2) (L = Sy ) + {|bm|*) Sy, @s well as their stationaritffbm|") = (|bo|"). Equa-

tion (9) constitutes an extremely important result that the phase noise grows with the variance
of the square amplitude of the information symbols and tha#iishes in the case of pure
phase-modulation whet®y| is a constant (and hendg|*) — (|bp|?)? = 0). This is a rather
counter-intuitive result in view of the fact that upon propagation through a dispersive fiber, the
intensity of the electric field appears to fluctuate randomly, independent of the way in which it
is modulated ( [6, 12] and see discussion related to Fig. 2 in Sec. 4 of this paper).

Apart from the pure phase-noise that follows from XPM between WDM channels there are
additional noise contributions involving a single pulse from the channel of interest with a pair
of pulses from the interfering channel. We refer to the NLIN due to these contributions as
residual NLIN, so as to distinguish it from the phase NLIN that was described earlier. In general,
since residual NLIN occurs in the process of temporal overlap between three or four distinct
waveforms (see Eq. (7)) its magnitude in the presence of amplitude modulation (as in 16QAM
or larger QAM constellations) is expected to be notably smaller than that of phase noise, as we
demonstrate numerically in section 4.

A further simplification of the expression for the variance of phase-noise follows in the limit
of large accumulated chromatic dispersion, which accurately characterizes the situation in most
modern fiber-communications links that do not include inline dispersion compensation. In this
situation the propagating waveforgtf) (z,t) quickly becomes proportional to its own Fourier
transform [26], namely

09z t) ~ \/;B”ze)(p(_%iz) g(o, BtT/z) . (10)

whered(0, w) = [©,g(0,t)exp(iwt)dt. Equation (10) simply reflects the fact that dispersion
causes different frequency components of the incident signal to propagate at different velocities,
so that the frequency spectrum of the injected signal is mapped into time. In this limit the

coefficientsXo mm are given by
~ mT
s(ov-a-7z)

where we defined =t/f”z In Eq. (11) we neglected the nonlinear distortion generated in the
vicinity of the fiber input and definezh ~ T?/|3"| < L as the distance after which the large
dispersion approximation Eq. (10) becomes valid. Using Eq. (11) we derive an approximate an-
alytic expression foA62 in the case of perfectly distributed amplification. The approximation
relies on the notion that the largest overlap between the two waveforms in the integrand of (11)
occurs at a position= zn, = —mT /3”Q. We replace the integral from to L with an integral

from —oo to 00 and approximate (z) with f(zy), which is set to 1 whemy, € [z,L] and to

0, otherwise. Physically this is equivalent to stating that all collision whose center is inside the
region|z, L] are counted as complete collisions in spite of the fact that in reality some of them
(those that are centered close to the edges of the fiber) are partial. Multiplying the integrand by
Zm/z (which is close to unity when there is strong overlap between pulses), and changing the
order of integration, we obtain

2

_ [t dv o 2
Xomm=" /ZO @zl (2) | T2z |90V (11)

dv 2 [®  Zmf(zm) | mT
Xomm = [ 5rlg0v)? [ dr i lg(ov-a- g
1 1B"QIL
~ | g Osm= w2
0 otherwise
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Substitution into Eq. (9) yields the result

4L
2_ 4 _ 2,2
A6° = (<|b0| > <|b0| > ) |B//Q|T' (13)
The simplified expression fofo mm, Eq. (12), also allows calculation of the temporal autocor-
relation function of the phase noi&e (1) = (6,6,1) — (8)2, where we use the notatid to
denote the nonlinear phase rotation induced upomitiesymbol in the channel of interest.
Using Eq. (8) we have [19, 20]

UL
IB"QIL

.
Ro)) = 425 S (IbmfIbnsi 2 XommXgnn — (6)% = A62 [1— } o

where[a]™ = max{a,0}. In the case of multiple WDM channels, Eq. (14) generalizes to

.
Roll) = 3 86%(@s)[1- b 15)

whereQs is the frequency separation between i@ WDM channel and the channel of in-
terest and the summation is over all the interfering channels. Notice that in the limit of large
accumulated dispersiof3”Qs|L/T >> 1, the phase noise is characterized by a very long tem-
poral correlation. This property allows a cancelation of nonlinear phase-noise with available
equalization technology [24, 25] and contributes to the achievement of higher information ca-
pacity [19, 20]. It also allows the extraction of phase noise from simulations, as we explain in
Sec. 4.

3. Frequency domain analysis

In this section we review the approach adopted in [6—13] of analyzing in the frequency domain
the interaction leading to NLIN and relate it to the analysis in Sec. 2.

Following [6], we assume that the transmitted symiaglandb,, are periodic with period,
S0 thatan m = an, bnym = by and the propagating field? (zt), which is defined in Eq. (1) is
periodic in time with a perioMT. As pointed out in [6], for large enoud¥, the assumption of
periodicity is immaterial from the physical standpoint, but facilitates calculations by allowing
the representation of the signal by means of discrete frequency tones,

1 _j2m _j _j2m
u(0>(z,t):ﬁ ;vn(z)e urt e Qt;fn(z)e arht| (16)

The coefficients/, represent the spectrum of the channel of interest at frequeneRrr-,
whereas, represent the spectrum of the interfering channel at Q + 27TM—”T. Both v, andé,

are zero mean random variables whose statistics depends on the transmitted symbols in a way
on which we elaborate in what follows. The complex amplitude of the NLIN that the interfering
channel imposes on the channel of interest is the sum of all the nonlinear interactions between
triplets of individual frequency tones,

2 Z PmViéméy, (17)
Imn,m##n

Au(t)

where consistently with [6], the ternms = n that only contribute to a time independent phase-
shift, where excluded from the summation. The factor of 2 in front of the sum in Eq. (17) is
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characteristic of XPM when the nonlinearly interacting channels are co-polarized. The coeffi-
cientspm, are given by [7]

( V)3/2e7i,§[’-|r-(l+mfn)t
MT

1o ol (BF)*B/NLs(m-n)(1-aM—n) 1 _ o-aLsgi(&F)°B"Ls(m-n)(1-gM—n)

L @B o — i (212 (m—n)(I—qM —n)

Pirmn

, (18)

where the WDM channel spacing is assumed t@be qZT”, Ls is the length of a single am-
plified span andN is the overall number of amplified spans in the system. The NLIN power is
given by the square average/ud(t)

([Bu(t)|?) = 4 PPy (Vi Vi7) (Emén & &) (19)

Imnl’m/'r/

wherem=£ nandm’ # n’ and where we have made use of the fact thaindé, are statistically
independent for all andm since they correspond to different WDM channels that transmit
statistically independent data. Lack of correlation between different frequency tones implies
that (vivj;) = (|v|?) &, and the assumption of true statistical independence (which is key in
obtaining the results of [6]) implies tha&fmé; & &v) = (|&m|®) (|€n|%) Srv O (1— Om) (Where

the irrelevant cases witth = n, or m = n’ were ignored for simplicity). Equation (19) then
simplifies to

(|auf?) = 4| Zm% [P (| Vi %) ([ &m[) (|&n[?). (20)

an expression thainly depends on the mean power spectrum of the interacting channels and
is totally independent of modulation format. As we now show for the case of single carrier
modulation, the above assumption of statistical independence is unjustified (even as an approx-
imation) with most of the relevant modulation formats.

We consider a generic interfering channel as in(1) = 5 bxg(t — KT ), which is periodic
as in [6] withby, m = by. The Fourier coefficients of(t) are

- ¢—/ (1)@ # at — g(en Fibké%k“ (21)

whered({w) = [g(t)exp(iwt)dt is the Fourier transform a(t), wy = nhﬁ’TT and the final ex-
pression on the right-hand-side follows from a straight-forward, albeit slightly cumbersome
algebraic manipulation. The correlation relations between the vafjpare obtained by aver-
aging the produc¢;; with respect to the transmitted data. In order to simplify the algebra we

will assume Nyquist, sinc-shaped pulggs) = sinc(mt/T) in which case [6, 7]

(enti = IO oy, (22)

The restriction to Nyquist pulses ensured wide-sense stationarixytioand allowed avoiding
the appearance of correlations between frequency ténesid &, that are separated by an
integer multiple ofM [6]. Assuming circularly symmetric complex modulation, the central
limit theorem can be applied to Eqg. (21), implying (as argued in [6, 7]) that in the limit of
large M, the coefficients, are Gaussian distributed random variables. Yet, unlike the claim
made in [6, 7], the fact that the coefficierfis are Gaussian and uncorrelated does not imply
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their statistical independence. That is because the coeffiggate Gaussian individually, but

not jointly and hence their lack of correlation does not imply anything regarding the statistical
dependence between them. In order to see the lack of joint Gaussianity note th&j ifvatle
jointly Gaussian them(t) (which can be expressed as their linear combination) would have to
be Gaussian as well. Therefore, unless the data-carrying symbate themselves Gaussian
distributed, the Fourier coefficients cannot obey a jointly Gaussian distribution. We now
write the fourth order correlation, which is obtained from Eq. (21) (again, after some algebra
and for the case of Nyquist pulses)

b |22
Ena&irn) = L G P10 (G i + i)
bol*) — 2(|bo|2)2
RE P o9
where
Freni = G0n) (@) () Gl)
X (On-mim-m-M+ O —m+ i —mim) - (24)

The first term on the right-hand-side of (23) is what would follow if the coefficiéptehere

indeed statistically independent, as assumed in [6], whereas the second term reflects the devi-
ation from this assumption. Upon substitution into Eq. (19) we find that the noise variance can
be written as

(Jauf?) = (laol?)(|bol?)?X1+ (laol?) ({[bol*) — 2(|bo[*)?) X2 (25)
where
Y= o5 3 la(@)2l6(n PIgen) Ploml (26)
Imn,m#n
4 ~ .
X2 = Wlmnzmn,|g(M)|2<@mnnYn’lenP|m(n/ (27)

where terms withm=n or m' = n’ are excluded from the summation. The first term on the
right-hand-side of (25) is due to second-order correlations between the frequency tones and we
will refer to it as the second-order noise (SON). This term coincides with the result of [6, 12]
(and can be obtained by substituting Eq. (22) in Eq. (20)). The second term is absent in the
calculations of [6, 12] and since it results from fourth order correlations between the frequency
tones we will refer to it as fourth-order noise (FON). Consistently, we will refexit@nd

X2 as the SON and FON coefficients, respectively. Due to the delta functions in the definition
of Zyamy in EQ. (24), the number of free indices in the summation in Eq. (27) is four (e.g.
I,m,n,n, in which caseaY is determined by the other four and giveny=n+n' —m— M,
n=n+n —m orn =n+n—m+ M). Since every free index runs oveM) values, the

factor of 1/M in the expression for the FON coefficiexitis countered byl more summations

than in Eq. (26) and hencg, and x» are of similar order of magnitude. Moreover, as we
demonstrate numerically in Sec. 4, in the limit of distributed amplification the coefficients

is almost identical tox; and they become practically indistinguishable when the frequency
separation between the interfering channels grows (see Fig. 5). Interestingly, in the special
case of purely Gaussian modulation, when the symbgkre circularly symmetric complex
Gaussian variableg/bo|*) — 2(|bp|?)?> = 0 and the FON vanishes, in which case the NLIN
spectrum found in [6] is exact. Consistently, we remind that this is also the only case in which
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X(t) is truly Gaussian distributed and the lack of correlation between different frequency tones
indeed implies their statistical independence.

The last point that we address in this section is the assumption of Gaussianity in the context
of NLIN in the limit of high chromatic dispersion. The argument against this assumption is
similar to the argument made in the context of Gaussianity in the frequency domain. That is
because in the limit of large dispersion, the signal frequency spectrum is simply mapped to the
time domain. Therefore, the field becomes Gaussian point-wise, but it does not form a Gaussian
process. It is in fact a general principle that a linear unitary time independent operation, such
as chromatic dispersion, cannot transform a non-Gaussian process into a Gaussian one. In the
absence of joint Gaussianity between all of the field samples, the power density spectrum does
not sufficiently characterize the nature of NLIN.

4. Numerical validation

In order to validate the analytical results of the previous section, a set of simulations, all based
on the standard split-step Fourier transform method, was performed. In order to demonstrate
the principle and to be able to test the phase-noise variance predicted in Eq. (13) we perform
all simulations for the case of perfectly distributed gain, namely where the loss coeficient

set to 0. The simulations are performed for a 500 km system over a standard single mode fiber,
whose dispersion coefficient@’ = 21 p€/km and whose nonlinearity coefficient is given by

y= 1.3 W-lkm~1. As we are only interested in characterizing the NLIN, we did not include
ASE noise in any of the simulations. In all our simulations the symbol-rate was 100 Gb/s,
similarly to [27], and the channel spacing was set to 102 GHz. Nyquist pulses of a perfectly
square optical spectrum (of 100 GHz width) were assumed. The number of simulated symbols
in each run was 8192 and up to 500 runs (each with independent and random data symbols)
were performed with each set of system parameters, so as to accumulate sufficient statistics.
The data symbols of the various channels were generated independently of each other using
Matlab’s random number generator whose periodicity is much larger than the collective number
of symbols produced in our simulations. Use of very long sequences in every run is critical in
such simulations so as to achieve acceptable accuracy in view of the long correlation time of
NLIN, as well as to avoid artifacts related to the periodicity of the signals that is imposed by the
use of the discrete Fourier transform. In all system simulations that we present, the number of
WDM channels was five, with the central channel being the channel of interest. At the receiver
the channel of interest was isolated with a matched optical filter and back-propagated so as to
eliminate the effects of SPM and chromatic dispersion.

4.1. Modulation format dependence

In order to demonstrate the dependence of NLIN on the modulation format we plot in Fig. 1 the
received signal constellations in six different cases. The figures in the left column represent the
case in which thehannel of interest undergoes QPSK modulation, whereas the right column
refers to the case in which the modulation of the channel of interest is 16-QAM. The figures
in the top panel correspond to the case in whichitierfering channelsare QPSK modulated,
whereas the figures in the middle panel were produced with 16-QAM modulated interferers.
The bottom two figures were produced in the case where the symbols of the interfering channels
where Gaussian modulated. In the top panel, where the interfering channels undergo pure phase
modulation, the NLIN is almost circular, albeit a small amount of phase-noise can still be
observed. This small phase-noise is due to coeffici¥nis, (k # m) that were neglected in

Sec. 2 [23]. In the center and bottom panels, where the intensity of the interfering channels
is modulated, the phase-noise nature of NLIN is very evident, and it is largest in the case of
Gaussian modulation.
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Fig. 1. Received constellations (after compensating for the average nonlinear phase-
rotation) of the channel of interest after 500 km of fiber. The per-channel power was -2dBm.
The channel of interest is QPSK-modulated in the left colunmth 86tQAM modulated in

the right column. In the top panel (Figs. (a) and (b)) the modulation of the interfering chan-
nels is QPSK. In the middle panel (Figs. (c) and (d)) the modulation of the interfering
channels is 16-QAM, and in the bottom panel (Figs. (e) and (f)) the modulation of the in-
terfering channel is Gaussian. The dominance of phase noise is evident in the middle and
bottom panels, whereas in the top panel phase-noise is negligible.

The modulation format dependence that is predicted in [17]samdmarized in Sec. 2 is
of somewhat subtle origin and is fairly counter-intuitive. As was argued correctly in [6, 12,
13] the electric field of the strongly dispersed signal appears fairly random independently of
the modulation format as can be seen in Fig. 2. Moreover, as noted earlier, the point-wise
distribution of the field is indeed Gaussian. Nonetheless the types of NLIN produced by the
various modulations are very different as can be clearly seen in Fig. 1.

We note that the phase-noise nature of NLIN was not evident in the simulation results re-
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Fig. 2. The electric field intensities of a single channel operating with Nyquist sinc-shaped

pulses at a baud-rate of 100 GHz after being dispersed by 8500 ps/nm/km (equivalent to
500 km in standard fiber). The solid (black), dashed (blue), and dash-dotted (red) curves
correspond to QPSK, 16-QAM and Gaussian modulation, respectively. In spite of the ap-

parent similarity between the dispersed waveforms as demonstrated in this figure, the NLIN
strongly depends on the modulation format.

ported in [7]. While the difference between the results cannot be determined unambiguously
based on the simulation details provided in [7], it may result from certain differences in the sim-
ulated system. Most importantly, the simulations in [7] do not eliminate intra-channel effects
through back-propagation, as we do here, but use adaptive equalization, which may leave some
of the intra-channel interference uncompensated. Furthermore, it is possible that the phase-
noise that we report (which is characterized by a very long temporal correlation) is inadver-
tently eliminated in the process of adaptive equalization. Additionally, some of the discrepancy
could result from the fact that the system simulated in [7] assumed lumped amplification, as
opposed to distributed amplification that we assumed here. It is possible that these differences
explain the agreement between the simulations reported in [7] and the analytical results of the
GN model.

4.2. Thevariance of phase-noise and assessment of the residual NLIN

In this section we validate the analytical expression for the phase-noise variance in Eq. (13),
and assess the residual noise. We remind that the residual noise is the part of the NLIN that
does not manifest itself as phase-noise and hence remains after phase-noise cancelation. To
this end, we define a procedure for extracting the phase noise from the results of the simula-
tions. Denoting by, then-th sample of the received signal (in the channel of interest and after
back propagation and matched filtering) we hayve- a,exp(i6,) + Aan, whereAay, is the
residual noise. We extraéf through a least-squares procedure by performing a sliding average
of the quantitya;;r, over a moving window o = 50 adjacent symbols. We then normalize

the absolute value of the averaged quantity to 1, so as to ensure that we are only extracting
phase noise. The residual noidae,, is evaluated by subtracti%exqién) (with 2 being

the estimated phase) from the received samplé&he width of the sliding window needs to

be narrow enough relative to the correlation timefgfbut broad enough to ensure meaning-

ful statistics. Using this procedure we computed the autocorrelation function of the nonlinear
phasef, which is plotted in Fig. 3 together with the analytical expression (15). The agreement
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Fig. 3. The phase-noise autocorrelation functpiil ) of the phase-noise Eq. (15) (dashed-
red) and as obtained from the simulations (solid blue) for -6dBm per-channel average power

[29].
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Fig. 4. The complete NLIN varianc@&a%) normalized to the average symbol energy (top
solid curve), the phase noi&®? as obtained from the simulations (center solid curve) and
the variance of the residual noié&a?) normalized to the average symbol energy [29]. The
dashed curve (red) shows the analytical result’f67, Eq. (13). It is within 20% of the
numerically obtained\62.

between the analytical and numerical autocorrelation functions is self evident. Notice that over
a block of 50 symbols the autocorrelation@fdrops only by 6% relative to its maximal value,
thereby justifying the choice dd = 50 for the moving average window. Further considerations
in optimizing the window-size can be found in [19].

Figure 4 shows the normalized overall NLIN varianéeg) /PT, the phase-noise variance
AB?, and the normalized variance of the residual ndisa3, )/PT, whereP is the average
power in each of the interfering channels. The analytical expression for the phase-noise variance
Eq. (13) is also plotted by the dashed red curve. All the curves in Fig. 4 were obtained in the
case of Gaussian modulation of the data-symbols. The accuracy of the analytical result is self
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Fig. 5. (a) The SON coefficient; (blue diamonds) and the FON coefficigpt(red circles)

as a function of the spacing between channels. The coefficients in the figure are normalized
by y?L?/T2 and hence they are unit-less. The green squares ghew,. (b) The NLIN

power versus the average power per-channel for QPSK, 16-QAM and Gaussian modulation.
The symbols show the results of a split-step-simulation performed with the same parame-
ters as in Fig. 1. The solid lines represent Eq. (29), whereas the dashed green line shows
the prediction of the GN model Eq. (28). It is correct only with Gaussian modulation, but
severely overestimates the actual noise in other formats.

evident, as is the clear dominance (that was predicted in [17]) of the phase-noise component of
NLIN.

4.3. Thedifference with respect to the NLIN power predicted by the GN model

In order to assess the error in the estimation of the NLIN power by the GN model, we compute
the NLIN power, as it is predicted by the GN model and as it is predicted by the theory in Sec.
3. In the case wherk is the average power used in each of the channels, these quantities are

specified by Eq. (25) and given by
(BuP)en = P23 xi(Qs) (28)
S

4
(e = 3@~ xa(@s)] + P ([P0 ~1) S ra(@s). (@9)

S

where the summation indestuns over all neighboring channels (which are spectrally separated
by Qs from the channel of interest). The SON coefficigmtand the FON coefficient, are
plotted in Fig. 5a as a function of the frequency separation between the interacting channels,
where the blue diamonds are used to repregerand the red circles represexyt. The two
coefficients are seen to be very similar to each other so that the difference between them, which
is illustrated by the green squares, is significantly smaller than the coefficients themselves. The
Monte-Carlo integration method [28] was deployed in order to compute the sums in Egs. (26)
and (27) in the limit oM — o with the estimation error being always lower than 3%.

In Fig. 5b we show the NLIN power in our simulated 5-channel system in the cases of QPSK,
16-QAM, and Gaussian modulation. The this solid curves show the theoretical(tasif}ry
of Eq. (29) and the circles represent the variance obtained in the full split-step simulation. The
dashed green line represents the prediction of the GN mgael’)gn, EqQ. (28), which is
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correct only for Gaussian modulation. In the case of QPSK the actual NLIN power is lower
by approximately 8dB than the prediction of the GN model. Since the NLIN powers in Fig. 5b
include the contribution of phase-noise, the relation to the error-rate is not straightforward.

5. Discussion

Having reviewed the essential parts of the time domain model and the frequency domain GN
model, we have pointed out that the difference between the models results from three unjustified
assumptions in the frequency domain approach. The assumption that NLIN can be described
as an additive noise term that is statistically independent on the signal, the assumption that in
the large dispersion limit the electric field of the signal and the noise forms a Gaussian process
that is uniquely characterized in terms of its spectrum, and the claim of statistical independence
between non-overlapping tones in the spectrum of the interfering signal. We have shown that
by correctly accounting for fourth-order correlations in the signals’ spectrum an extra term —
the FON — arises. The FON (which can be positive, or negative depending on the modulation
format) needs to be added to the noise power obtained in the GN model (the SON) in order
to obtain the correct overall NLIN. The inclusion of the FON recovers the dependence of the
NLIN power on modulation format, a property that is absent from the existing GN model and
reconciles between the frequency domain and the time domain theories. We stress that the
current GN model of [6-13] which does not contain the FON term, cannot be considered a valid
approximation, since with standard modulation formats (e.g QPSK, 16-QAM), the magnitude
of the FON is comparable to that of the SON, which is the quantity calculated in [6, 7]. The
numerical validation of the theoretical results has been performed in the case of a five-channel
WDM system with idealized distributed amplification. In this case the FON term was almost
identical to the SON term, implying that the error in the NLIN power predicted by the GN
model is very significant.

While the study presented in this paper focused on the single polarization case, the effect of
polarization multiplexing can be be anticipated by considering the relevant factors. The SON
part of the NLIN variance changes in the presence of polarization multiplexing by a factor of
16/27 [7], whereas it can be shown that the FON part changes by 40/81. The small difference
between these factors has practically no effect on the conclusions made in this paper regarding
the importance of accounting for FON. The numerical study of polarization multiplexed trans-
mission, as well as the effects of lumped amplifications and the many other practical system
parameters, is beyond the scope of this work and will be addressed in the future.

Finally, we note that when treating the NLIN as an additive, signal-independent noise pro-
cess, its bandwidth appears to be comparable to that of the signal itself. Thus, one cannot take
advantage of the fact that phase noise that dominates the variance of NLIN in many cases of
interest is very narrow-band as we have shown here (see Eg. (15) and Fig. 3). The importance
of this property of NLIN is immense as it allows cancelation of the phase-noise part of NLIN
by means of available equalization technology [24, 25], such that the residual NLIN (whose
variance is much smaller than that of the NLIN as a whole) determines system performance.
The system consequences of this reality have been addressed in [20].
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